解码生命 守护健康

基因编辑技术CRISPR-Cas9的未来前景(二)之药物研究

2017-06-05 12:27:27基因编辑技术

设想有那么一天,科学家可以在实验室通过替换机体DNA来寻找一系列问题答案,或许医生还能设计改变病人基因的药物来治疗基因异常。有点像科幻小说?随着基因编辑(Cas9/CRISPR系统)的发展,这终将成为现实。

当然CRISPR-Cas9技术最大的潜力是治病,但和其它RNA、DNA药物一样递送是个很大障碍,这个和你是否是CRISPR-Cas9没有关系。类似的RNA药物已经开发了近30年,尚无商业上成功的药物(上市两个很小的RNA药物)。另外选择性是个非常关键问题。DNA治疗逆转很困难,所以必须万无一失。DNA识别和水解拨皮去骨还是一个化学反应,理论上不可能没有副反应,只是多少而言。但人体能承受多少副反应?那是一个很大的问题。siRNA原来也认为选择性很高但后来发现脱靶常有发生。另外DNA编辑无时无刻不在发生,内源调控系统对CRISPR-Cas9如何控制也是问题。

但在实现之前,科学家必须克服一系列困难,包括如何提高基因编辑修改目标DNA序列的速度。

美国加州纳米技术研究院(California NanoSystems Institute)等机构的研究人员通过研究基于基因编辑技术开发出了一种高准确率及高效的DNA筛选系统;为了开发出抵御病毒感染的新型药物,研究者们就需要知晓病毒感染健康细胞的机制,而这些潜在的机制或许就是开发新型药物的靶点。

  为了确定病毒感染的机制或靶点,科学家们就需要对宿主细胞中的DNA进行筛查来发现特殊的遗传突变,而通常研究者们是利用移除或敲除对病毒感染或复制非常关键的基因来实现的。近日研究人员Robert Damoiseaux就同桑地亚国家实验室的研究者们联合,基于CRISPR技术开发出了一种特殊的文库筛查法,相比传统方法而言,这种新型的方法就可以进行更加有效且高精密的研究,来帮助科学家们寻找引发疾病的关键靶点基因。

  首先研究者们从组成CRISPR的混合物开始研究,即多个DNA片段文库,他们利用高通量的自动设备将混合物进行分离成为单一组分,随后再对单一组分进行筛查,这样一来研究者们就可以在短时间内确定人类机体中寨卡病毒的易感基因,随后就可以设计出新型高效的抗病毒疗法来帮助机体抵御病毒的感染。
 

哈佛大学化学生物学教授刘大卫带领的科研团队开发出一种可以被小的类药物分子激发活性的Cas9形式,修改人类基因组中目标DNA序列的速度比标准Cas9形式快25倍。研究成果发表在最近的《自然·生物化学》杂志上。

“研究旨在通过对活跃期的Cas9仔细控制来提高基因编辑的特异性。我们设计了一个Cas9形式,只在给细胞提供无害类药物小分子时才能表现活跃。”刘教授说,“我们能证明用这个系统可以高效修改基因组。”

刘教授解释说,用小分子控制Cas9活性的想法虽然得以实现,但与其他药物治疗或实验室工具不同,
基因编辑不是一个“稳态”化学过程,“我们想要的就是爆发的基因编辑活性短暂到足以修改一到两种目标基因,然后你还可以让这种活性消失并不再影响细胞进程。”

  在桑地亚国家实验室研究人员的帮助下,研究者Damoiseaux的研究小组目前开始开发一种基于CRISPR的微阵列文库,而该文库将可以降低抗病毒疗法开发的成本并且加速抗病毒药物的开发过程。Damoiseaux说道,当你利用CRISPR从混合液中鉴别出了一组负责病毒复制的基因,你就必须进行一系列实验来证实每一个独立基因的功能,而在这种新开发的微阵列文库中,研究人员就好比玩游戏一样轻松,因为这种筛选系统可以直接鉴别出单一的基因,相比传统方法而言其就可以帮助研究者捕捉到更加微妙的效应。

  目前微阵列CRISPR文库可以应用到很多研究领域中去,比如进行癌症疗法的研究中等,通过对人类健康进行更好的理解,CRISPR技术就可以给科学家们带来更多意想不到的发现,同时对开发治疗多种遗传性疾病的新型疗法也将带来一定帮助和希望。
 

刘教授希望有一天Cas9和CRISPR技术能够精准到修改速率低于同步自然免疫的速率。他解释说:“如果能做到这一点,病人使用基因编辑相关疗法后,再患上癌症或其他基因疾病的风险会大大降低。”

鉴于基因编辑是一项全新的技术,他建议,科学家和其他社会组织之间建立一种对话关系,确保在发展和应用中对这项新技术“充分考虑”。

  基因有两个特点,一是能忠实地复制自己,以保持生物的基本特征;二是在繁衍后代上,基因能够“突变”和变异,当受精卵或母体受到环境或遗传的影响,后代的基因组会发生有害缺陷或突变。绝大多数产生疾病,在特定的环境下有的会发生遗传。也称遗传病。在正常的条件下,生命会在遗传的基础上发生变异,这些变异是正常的变异。

  含特定遗传信息的核苷酸序列,是遗传物质的最小功能单位。除某些病毒的基因由核糖核酸(RNA)构成以外,多数生物的基因由脱氧核糖核酸(DNA)构成,并在染色体上作线状排列。基因的复制与表达词通常指染色体基因。在真核生物中,由于染色体在细胞核内,所以又称为核基因。位于线粒体和叶绿体等细胞器中的基因则称为染色体外基因、核外基因或细胞质基因,也可以分别称为线粒体基因、质粒和叶绿体基因。

  在通常的二倍体的细胞或个体中,能维持配子或配子体正常功能的最低数目的一套染色体称为染色体组或基因组,一个基因组中包含一整套基因。相应的全部细胞质基因构成一个细胞质基因组,其中包括线粒体基因组和叶绿体基因组等。原核生物的基因组是一个单纯的DNA或RNA分子,因此又称为基因带,通常也称为它的染色体。

  基因在染色体上的位置称为座位,每个基因都有自己特定的座位。在同源染色体上占据相同座位的不同形态的基因都称为等位基因。在自然群体中往往有一种占多数的(因此常被视为正常的)等位基因,称为野生型基因;同一座位上的其他等位基因一般都直接或间接地由野生型基因通过突变产生,相对于野生型基因,称它们为突变型基因。

 


 

  在二倍体的细胞或个体内有两个同源染色体,所以每一个座位上有两个等位基因。如果这两个等位基因是相同的,那么就这个基因座位来讲,这种细胞或个体称为纯合体;如果这两个等位基因是不同的,就称为杂合体。

  在杂合体中,两个不同的等位基因往往只表现一个基因的性状,这个基因称为显性基因,另一个基因则称为隐性基因。

  在二倍体的生物群体中等位基因往往不止两个,两个以上的等位基因称为复等位基因。不过有一部分早期认为是属于复等位基因的基因,实际上并不是真正的等位,而是在功能上密切相关、在位置上又邻接的几个基因,所以把它们另称为拟等位基因。某些表型效应差异极少的复等位基因的存在很容易被忽视,通过特殊的遗传学分析可以分辨出存在于野生群体中的几个等位基因。

  这种从性状上难以区分的复等位基因称为同等位基因。许多编码同工酶的基因也是同等位基因。

  属于同一染色体的基因构成一个连锁群(见连锁和交换)。基因在染色体上的位置一般并不反映它们在生理功能上的性质和关系,但它们的位置和排列也不完全是随机的。在细菌中编码同一生物合成途径中有关酶的一系列基因常排列在一起,构成一个操纵子(见基因调控);在人、果蝇和小鼠等不同的生物中,也常发现在作用上有关的几个基因排列在一起,构成一个基因复合体或基因簇或者称为一个拟等位基因系列或复合基因。

基因编辑公司Editas获得包括世界首富之一的比尔·盖茨等投资者的1.2亿美元投资。Editas是由CRISPR-Cas9的发明者之一,MIT华裔年轻教授张锋参与发起成立的。参与投资的包括风投界的顶级高手如谷歌风投在内的十余个基金。这是年轻的CRISPR-Cas9技术迄今为止获得的最大一笔投资。被称为魔法剪刀的CRISPR-Cas9技术遇到这些磨剪子高手无疑会更快成熟起来。